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Abstract:-This paper presents the study of three-dimensional flow and the injection/suction on an 
oscillatory flow of a visco-elastic incompressible fluid through a highly porous medium bounded 
between two infinite horizontal porous plates. The fluid injected with constant velocity through the 
lower stationary plate and is being sucked simultaneously with same constant velocity through the 
upper plate oscillating in its own plane about a nonzero constant mean velocity. On the basis of 
certain simplifying assumptions,closed form analytical solutions are therefore constructed and the 
important properties of the overall structure of the flow are discussed. Emphasis has been given on the 
effects of the visco-elastic parameter with the combination of other physical parameters.  
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1.Introduction: 

The study of three-dimensional unsteady flow 
has been the object of extensive  research due 
to its possible applications in many branches of 
science and Technology. The analysis of 
oscillatory fluid flow through porous medium 
in a rotating channel is of considerable interest 
because of its applications in different areas of 
aeronautics, missiles, aerodynamics etc. The 
unsteady oscillatory flows play an important 
role in chemical engineering, Turbo machinery  
and Aerospace Technology. In view of such 
applications, Rott and Lewellen [1] have 
investigated free convective flow through a 
porous medium. Free convection flow through 
a porous medium  bounded by a vertical surface 
has been investigated by Raptis et al.[2]. Raptis 
[3] has also investigated a steady free 
convection and mass transfer through  a porous 
medium bounded by an infinite vertical plate. 
The study of oscillatory flow through porous  

medium in presence of free convection flow 
was investigated by Raptis and Perdikis [4]. 
Singh and Kumar [5] have analysed unsteady 
two-dimensional free convection through 
porous medium bounded by an infinite vertical 
plate with permeability fluctuates in time about 
a constant mean. Baghel et al.[6] have 
analysed incompressible two-dimensional 
unsteady free convection through a rotating 
porous medium. Under different aspects 
Raptis and Singh [7] have extended their 
studies  in free convective unsteady fluid 
flow through porous medium. Singh and 
Cowling [8] have studied the effect of free 
convection on magnetic electrically 
conducting fluids past a semi-infinite flat 
plate. The combined effects of forced and 
free convection through vertical surface was 
investigated by Loyed and Sparrow[9]. In 
recent years , a tremendous development has 
occurred in the modelling of non-Newtonian 
fluid flow mechanics. Non-Newtonian fluids, 
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unlike Newtonian fluids present characteristics 
which can not be described by the classical 
linear viscous model. In non-Newtonian fluid 
flow mechanics, the analysis of visco-elastic 
fluid lies on the fact that these fluids possess  
certain degree of elasticity in addition to 
viscosity and also can exhibit normal stress and 
relaxation effects. 

       The Walters liquid (Model 𝐵𝐵′ ) [10] is a 
visco-elastic fluid which was developed to 
simulate viscous fluids possessing short 
memory elastic effects and can simulate 
accurately many complex polymetric  and 
biotechnological fluids. This model has 
therefore been studied extensively in many 
flow problems. A number of researchers like 
Soundalgekar and Puri [11], Nanousis [12], 
Choudhury and Das [13], Murthy et al.[14], 
Mustafa et al.[15], Choudhury and Dey[16], 
Cheng et al.[17], Choudhury and Das[18, 19] 
etc. have shown their interest in this dynamic 
and engineering field for its application in Geo-
Physics, soil-Physics, Bio Physics, Chemical 
and Petroleum engineering, Hydrology, Paper 
and Pulp Technology etc. 

                                             In this paper , we 
investigate the effects of the flow of oscillatory 
Walters liquid (Model 𝐵𝐵′ ) through porous 
medium in a rotating porous channel. The 
governing equations have been solved by using 
multi-parameter perturbation technique as 
discussed by Nowinski and Ismail [20]. To 
apply, this method the parameters must be 
independent of each another and must be of 
same order. In addition , these parameters must 
describe different physical and fluid properties 
such as the material and dynamic properties 
and must be small so that the higher powers  
and products can be neglected.           

2. Mathematical Formulation: 
 An oscillatory unsteady flow of a visco-elastic 
incompressible fluid through highly porous 
medium which is bounded between two infinite 
parallel plates has been considered. Here 𝑤𝑤0 is 
a constant injection velocity which is applied at 
the lower stationary plate and the same 
constant suction velocity 𝑤𝑤0  is applied at 
the upper plate which is oscillating in its own 
plane with a non-zero constant mean velocity 
𝑈𝑈0.A co-ordinate system is taken with  origin at 
the lower stationary plate lying in the 𝑥𝑥′𝑦𝑦′ - 

plane with 𝑥𝑥′  axis along the plate in the upward 
direction and 𝑦𝑦′  axis  normal to the plate. The 
𝑧𝑧′  axis is taken normal to the plane of the 
plates, which is the axis of the rotation about 
which the entire system is rotating with 
constant angular velocity Ω′ . Since the plates 
are of infinite in length, all physical quantities 
except the pressure depends only 𝑧𝑧′and 𝑡𝑡′ . We 
consider the velocity components 𝑢𝑢′ , 𝑣𝑣′ ,𝑤𝑤′  in 
the 𝑥𝑥′ ,𝑦𝑦′ , 𝑧𝑧′directions respectively and the flow 
in the rotating system is governed by the 
following equations: 

 

Equation of continuity: 

               𝜕𝜕𝑤𝑤
′

𝜕𝜕𝑧𝑧′
= 0                                                   (1) 

 

Momentum equations: 

𝜕𝜕𝑢𝑢′

𝜕𝜕𝑡𝑡 ′
+𝑤𝑤0

𝜕𝜕𝑢𝑢′

𝜕𝜕𝑧𝑧′
= − 1

𝜌𝜌
𝜕𝜕𝑝𝑝′

𝜕𝜕𝑥𝑥 ′
+ 𝜈𝜈 𝜕𝜕

2𝑢𝑢′

𝜕𝜕𝑧𝑧′ 2
− 𝑘𝑘0 �

𝜕𝜕3𝑢𝑢′

𝜕𝜕𝑡𝑡 ′ 𝜕𝜕𝑧𝑧′ 2
+

                𝑤𝑤0
𝜕𝜕3𝑢𝑢′

𝜕𝜕𝑧𝑧′ 3
� + 2Ω′𝑣𝑣′ − 𝜈𝜈 𝑢𝑢′

𝐾𝐾′
                     (2) 

𝜕𝜕𝑣𝑣′

𝜕𝜕𝑡𝑡 ′
+ 𝑤𝑤0

𝜕𝜕𝑣𝑣′

𝜕𝜕𝑧𝑧′
= − 1

𝜌𝜌
𝜕𝜕𝑝𝑝′

𝜕𝜕𝑦𝑦 ′
+ 𝜈𝜈 𝜕𝜕

2𝑣𝑣′

𝜕𝜕𝑧𝑧′ 2
− 𝑘𝑘0 �

𝜕𝜕3𝑣𝑣′

𝜕𝜕𝑡𝑡 ′ 𝜕𝜕𝑧𝑧′ 2
+

                 𝑤𝑤0
𝜕𝜕3𝑣𝑣′

𝜕𝜕𝑧𝑧′ 3
� − 2Ω′𝑢𝑢′ −  𝜈𝜈 𝑣𝑣′

𝐾𝐾′
                (3) 

where 𝜈𝜈 = 𝜂𝜂0
𝜌𝜌

   

The boundary conditions for the problem are 

𝑢𝑢′ = 𝑣𝑣′ = 0 ,  𝑤𝑤′ = 𝑤𝑤0   𝑎𝑎𝑡𝑡   𝑧𝑧′ = 0 

𝑢𝑢′ = 𝑈𝑈′(𝑡𝑡) = 𝑢𝑢0(1 + 𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜔𝜔′𝑡𝑡′) ,  

  𝑣𝑣′ = 0 ,𝑤𝑤′ = 𝑤𝑤0    𝑎𝑎𝑡𝑡  𝑧𝑧′ = 𝑑𝑑                     (4) 

where 𝜔𝜔′  is the frequency of oscillation and 𝜀𝜀 is 
very small positive number. 

Eliminating the pressure gradient , under the 
usual boundary layer approximation, we get,  

𝜕𝜕𝑈𝑈′

𝜕𝜕𝑡𝑡 ′
= − 1

𝜌𝜌
𝜕𝜕𝑝𝑝′

𝜕𝜕𝑥𝑥 ′
− 𝜈𝜈 𝑈𝑈

′

𝐾𝐾′
                                     (5) 

𝜕𝜕𝑢𝑢′

𝜕𝜕𝑡𝑡 ′
+𝑤𝑤0

𝜕𝜕𝑢𝑢′

𝜕𝜕𝑧𝑧′
= 𝜈𝜈 𝜕𝜕

2𝑢𝑢′

𝜕𝜕𝑧𝑧′ 2
+ 𝜕𝜕𝑈𝑈′

𝜕𝜕𝑡𝑡 ′
+ 2Ω′𝑣𝑣′ −

                  𝜈𝜈
𝐾𝐾′

(𝑢𝑢′ − 𝑈𝑈′) −  𝑘𝑘0 �
𝜕𝜕3𝑢𝑢′

𝜕𝜕𝑡𝑡 ′ 𝜕𝜕𝑧𝑧′ 2
+

                     𝑤𝑤0
𝜕𝜕3𝑢𝑢′

𝜕𝜕𝑧𝑧′ 3
�                                     (6) 
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𝜕𝜕𝑣𝑣′

𝜕𝜕𝑡𝑡 ′
+ 𝑤𝑤0

𝜕𝜕𝑣𝑣′

𝜕𝜕𝑧𝑧′
= 𝜈𝜈 𝜕𝜕

2𝑣𝑣′

𝜕𝜕𝑧𝑧′ 2
− 2Ω′(𝑢𝑢′ − 𝑈𝑈′) −

                𝜈𝜈 𝑣𝑣′

𝐾𝐾′
− 𝑘𝑘0 �

𝜕𝜕3𝑣𝑣′

𝜕𝜕𝑡𝑡 ′ 𝜕𝜕𝑧𝑧′ 2
+𝑤𝑤0

𝜕𝜕3𝑣𝑣′

𝜕𝜕𝑧𝑧′ 3
�        (7)     

We introduce the following non-dimensional 
quantities ,  

𝜂𝜂 = 𝑧𝑧′

𝑑𝑑
 , 𝑡𝑡 = 𝜔𝜔′𝑡𝑡′  ,𝑢𝑢 = 𝑢𝑢′

𝑈𝑈0
 , 𝑣𝑣 = 𝑣𝑣′

𝑈𝑈0
  

,Ω = Ω′ 𝑑𝑑
2

𝜈𝜈
 ,𝜔𝜔 = 𝜔𝜔′ 𝑑𝑑

2

𝜈𝜈
 , 𝜀𝜀 = 𝑤𝑤0𝑑𝑑

𝜈𝜈
 ,            (8) 

𝐾𝐾 = 𝐾𝐾′

𝑑𝑑2  ,𝑈𝑈 = 𝑈𝑈′

𝑈𝑈0
 ,    

where Ω is the rotation of parameter, 𝜔𝜔 is the 
frequency parameter, 𝜀𝜀 is the injection/suction 
parameter and 𝐾𝐾 is the permeability parameter. 

Using (8)  into the equations (6) and (7) , we 
have 

 

𝜔𝜔 𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

+ 𝜀𝜀 𝜕𝜕𝑢𝑢
𝜕𝜕𝜂𝜂

= 𝜕𝜕2𝑢𝑢
𝜕𝜕𝜂𝜂2 + 𝜔𝜔 𝜕𝜕𝑈𝑈

𝜕𝜕𝑡𝑡
+ 2Ω𝑣𝑣 −

        1
𝐾𝐾

(𝑢𝑢 − 𝑈𝑈) − 𝑘𝑘0
𝑑𝑑2 �𝜀𝜀

𝜕𝜕3𝑢𝑢
𝜕𝜕𝜂𝜂3 + 𝜔𝜔 𝜕𝜕3𝑢𝑢

𝜕𝜕𝜂𝜂2𝜕𝜕𝑡𝑡
�      (9)                  

 

𝜔𝜔 𝜕𝜕𝑣𝑣
𝜕𝜕𝑡𝑡

+ 𝜀𝜀 𝜕𝜕𝑣𝑣
𝜕𝜕𝜂𝜂

= 𝜕𝜕2𝑣𝑣
𝜕𝜕𝜂𝜂2 + 𝜔𝜔 𝜕𝜕𝑈𝑈

𝜕𝜕𝑡𝑡
− 2Ω(u − U) −

         𝑣𝑣
𝐾𝐾
− 𝑘𝑘0

𝑑𝑑2 �𝜀𝜀
𝜕𝜕3𝑣𝑣
𝜕𝜕𝜂𝜂3 + 𝜔𝜔 𝜕𝜕3𝑣𝑣

𝜕𝜕𝜂𝜂2𝜕𝜕𝑡𝑡
�                 (10) 

 

subject to the boundary conditions  

𝑢𝑢 = 𝑣𝑣 = 0         𝑎𝑎𝑡𝑡   𝜂𝜂 = 0  

𝑢𝑢 = 𝑈𝑈(𝑡𝑡) = 1 + 𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝑡𝑡 ,                         (11) 

         𝑣𝑣 = 0 , 𝑎𝑎𝑡𝑡  𝜂𝜂 = 1                        

 

Equation (9) and (10) can now be combined 
into a single equation , by introducing the 
complex function  𝑞𝑞 = 𝑢𝑢 + 𝑖𝑖𝑣𝑣  as 

 

𝜔𝜔 𝜕𝜕𝑞𝑞
𝜕𝜕𝑡𝑡

+ 𝜀𝜀 𝜕𝜕𝑞𝑞
𝜕𝜕𝜂𝜂

= 𝜕𝜕2𝑞𝑞
𝜕𝜕𝜂𝜂2 + 𝜔𝜔 𝜕𝜕𝑈𝑈

𝜕𝜕𝑡𝑡
− 2Ω𝑖𝑖(𝑞𝑞 − 𝑈𝑈) −

                  1
𝐾𝐾

(𝑞𝑞 − 𝑈𝑈) − 𝑘𝑘 �𝜀𝜀 𝜕𝜕
3𝑞𝑞

𝜕𝜕𝜂𝜂3 + 𝜔𝜔 𝜕𝜕3𝑞𝑞
𝜕𝜕𝜂𝜂2𝜕𝜕𝑡𝑡

�           

                                                               (12) 

where 𝑘𝑘 = 𝑘𝑘0
𝑑𝑑2 

 The relevent boundary conditions are: 

𝑞𝑞 = 0   𝑎𝑎𝑡𝑡  𝜂𝜂 = 0 

𝑞𝑞 = 𝑈𝑈(𝑡𝑡) = 1 + 𝜀𝜀
2
�𝑒𝑒𝑖𝑖𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝑡𝑡 �                   (13) 

         𝑎𝑎𝑡𝑡 𝜂𝜂 = 1           

3 .Method of Solution:                           

In order to solve the equation (12) subject to 
the boundary conditions (13) , we look for a 
solution of the form 

𝑞𝑞(𝜂𝜂 , 𝑡𝑡) = 𝑞𝑞0(𝜂𝜂) +
𝜀𝜀
2 �
𝑞𝑞1(𝜂𝜂)𝑒𝑒𝑖𝑖𝑡𝑡 + 𝑞𝑞2(𝜂𝜂)𝑒𝑒−𝑖𝑖𝑡𝑡 �  

                                                                    (14) 

Substituting (14) into the equation (12), and 
comparing the harmonic and non-harmonic 
terms,  we get 

𝑘𝑘𝜀𝜀𝑞𝑞0
′′′ − 𝑞𝑞0

′′ + 𝜀𝜀𝑞𝑞0
′ + �𝑙𝑙2 + 1

𝐾𝐾
� 𝑞𝑞0 =

                                              �𝑙𝑙2 + 1
𝐾𝐾
�             (15) 

𝑘𝑘𝜀𝜀𝑞𝑞1
′′′ + (𝑘𝑘𝜔𝜔𝑖𝑖 − 1)𝑞𝑞1

′′ + 𝜀𝜀𝑞𝑞1
′ +

                   �𝑚𝑚2 + 1
𝐾𝐾
� 𝑞𝑞1 = �𝑚𝑚2 + 1

𝐾𝐾
�         (16) 

𝑘𝑘𝜀𝜀𝑞𝑞2
′′′ − (𝑘𝑘𝜔𝜔𝑖𝑖 + 1)𝑞𝑞2

′′ + 𝜀𝜀𝑞𝑞2
′ +

                  �𝑛𝑛2 + 1
𝐾𝐾
� 𝑞𝑞2 = �𝑛𝑛2 + 1

𝐾𝐾
�            (17) 

where 𝑙𝑙2 = 2Ω𝑖𝑖  , 𝑚𝑚2 = 𝑖𝑖(2Ω + 𝜔𝜔) ,  

           𝑛𝑛2 = 𝑖𝑖(2Ω − 𝜔𝜔) 

Here prime denotes differentiation with respect 
to 𝜂𝜂.  

The transformed boundary conditions are: 

𝑞𝑞0 = 𝑞𝑞1 = 𝑞𝑞2 = 0    𝑎𝑎𝑡𝑡  𝜂𝜂 = 0 

𝑞𝑞0 = 𝑞𝑞1 = 𝑞𝑞2 = 1   𝑎𝑎𝑡𝑡  𝜂𝜂 = 1                   (18) 

To solve the equations (15) to (17) under 
boundary conditions (18) , we consider the 
transformation as 

𝑞𝑞0(𝜂𝜂) = 𝑞𝑞00(𝜂𝜂) + 𝑘𝑘𝑞𝑞01(𝜂𝜂) + 𝜀𝜀(𝑘𝑘2)       (19) 

𝑞𝑞1(𝜂𝜂) = 𝑞𝑞10(𝜂𝜂) + 𝑘𝑘𝑞𝑞11(𝜂𝜂) + 0(𝑘𝑘2)       (20) 

𝑞𝑞2(𝜂𝜂) = 𝑞𝑞20(𝜂𝜂) + 𝑘𝑘𝑞𝑞21(𝜂𝜂) + 0(𝑘𝑘2)       (21) 
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where 𝑘𝑘 ≪ 1 for small shear rate. 

Substituting (19) to (21) into equations (15) to 
(17) , and comparing the like powers of 𝑘𝑘  , 
neglecting higher powers of 𝑘𝑘 we get 

𝑞𝑞00
′′ − 𝜀𝜀𝑞𝑞00

′ − �𝑙𝑙2 + 1
𝐾𝐾
� 𝑞𝑞00 = 

                                     −�𝑙𝑙2 + 1
𝐾𝐾
�  

𝜀𝜀𝑞𝑞00
′′′ − 𝑞𝑞01

′′ + 𝜀𝜀𝑞𝑞01
′ + �𝑙𝑙2 + 1

𝐾𝐾
� 𝑞𝑞01        (22) 

                                     = 0   

with boundary conditions : 

𝑞𝑞00 = 𝑞𝑞01 = 0     𝑎𝑎𝑡𝑡   𝜂𝜂 = 0 

𝑞𝑞00 = 1 , 𝑞𝑞01 = 0 ,𝑎𝑎𝑡𝑡  𝜂𝜂 = 1                 (23) 

and 

𝑞𝑞10
′′ − 𝜀𝜀𝑞𝑞10

′ − �𝑚𝑚2 + 1
𝐾𝐾
� 𝑞𝑞10 = 

                                       −�𝑚𝑚2 + 1
𝐾𝐾
�         (24) 

𝜀𝜀𝑞𝑞10
′′′ + 𝑖𝑖𝜔𝜔𝑞𝑞10

′′ − 𝑞𝑞11
′′ + 𝜀𝜀𝑞𝑞11

′ +
                               �𝑚𝑚2 + 1

𝐾𝐾
� 𝑞𝑞11 = 0  

with boundary conditions : 

𝑞𝑞10 = 0 , 𝑞𝑞11 = 0  𝑎𝑎𝑡𝑡  𝜂𝜂 = 0 

𝑞𝑞10 = 1  , 𝑞𝑞11 = 0   𝑎𝑎𝑡𝑡   𝜂𝜂 = 1               (25) 

Also 

𝑞𝑞20
′′ − 𝜀𝜀𝑞𝑞20

′ − �𝑛𝑛2 + 1
𝐾𝐾
� 𝑞𝑞20 

                        = −�𝑛𝑛2 + 1
𝐾𝐾
�                    (26)                                         

𝜀𝜀𝑞𝑞20
′′′ − 𝑖𝑖𝜔𝜔𝑞𝑞20

′′ − 𝑞𝑞21
′′ + 𝜀𝜀𝑞𝑞21

′ +
                         �𝑛𝑛2 + 1

𝐾𝐾
� 𝑞𝑞21 = 0     

with boundary conditions 

𝑞𝑞20 = 0  , 𝑞𝑞21 = 0    𝑎𝑎𝑡𝑡  𝜂𝜂 = 0 

𝑞𝑞20 = 1   , 𝑞𝑞21 = 0  ,𝑎𝑎𝑡𝑡   𝜂𝜂 = 1              (27) 

 

Solving the equations (22) , (24) , (26) with 
boundary conditions (23) , (25) , (27) 

respectively  and substituting these values  in 
(19) to (21) we get  the solutions as  

𝑞𝑞0 = 1 − �𝑒𝑒
𝛼𝛼1+𝛼𝛼2𝜂𝜂−𝑒𝑒𝛼𝛼2+𝛼𝛼1𝜂𝜂

𝑒𝑒𝛼𝛼1−𝑒𝑒𝛼𝛼2
� + 𝑘𝑘�𝐴𝐴4𝑒𝑒𝛽𝛽1+𝛼𝛼1𝜂𝜂 −

      𝐴𝐴4𝑒𝑒𝛽𝛽1+𝛼𝛼2𝜂𝜂 +  𝐴𝐴2𝜂𝜂𝑒𝑒𝛼𝛼1+𝛼𝛼2𝜂𝜂 − 𝐴𝐴1𝜂𝜂𝑒𝑒𝛼𝛼2+𝛼𝛼1𝜂𝜂 ]            

                                                                 (28) 

𝑞𝑞1 =
     1 − �𝑒𝑒

𝛼𝛼3+𝛼𝛼4𝜂𝜂−𝑒𝑒𝛼𝛼4+𝛼𝛼3𝜂𝜂

𝑒𝑒𝛼𝛼3−𝑒𝑒𝛼𝛼4
� + 𝑘𝑘�𝐴𝐴15�𝑒𝑒𝛽𝛽2+𝛼𝛼3𝜂𝜂 −

    𝑒𝑒𝛽𝛽2+𝛼𝛼4𝜂𝜂) +  𝐴𝐴9𝜂𝜂𝑒𝑒𝛼𝛼3+𝛼𝛼4𝜂𝜂 − 𝐴𝐴10𝜂𝜂𝑒𝑒𝛼𝛼4+𝛼𝛼3𝜂𝜂 +
     𝑖𝑖�𝐴𝐴16�𝑒𝑒𝛽𝛽2+𝛼𝛼4𝜂𝜂 − 𝑒𝑒𝛽𝛽2+𝛼𝛼3𝜂𝜂� +
        𝐴𝐴11𝜂𝜂𝑒𝑒𝛼𝛼3+𝛼𝛼4𝜂𝜂 − 𝐴𝐴12𝜂𝜂𝑒𝑒𝛼𝛼4+𝛼𝛼3𝜂𝜂 ��         (29)   

𝑞𝑞2 =
1 − �𝑒𝑒

𝛼𝛼5+𝛼𝛼6𝜂𝜂−𝑒𝑒𝛼𝛼6+𝛼𝛼5𝜂𝜂

𝑒𝑒𝛼𝛼5−𝑒𝑒𝛼𝛼6
� +   𝑘𝑘�𝐴𝐴27�𝑒𝑒𝛽𝛽3+𝛼𝛼5𝜂𝜂 −

𝑒𝑒𝛽𝛽3+𝛼𝛼6𝜂𝜂) +  𝐴𝐴21𝜂𝜂𝑒𝑒𝛼𝛼5+𝛼𝛼6𝜂𝜂 − 𝐴𝐴22𝜂𝜂𝑒𝑒𝛼𝛼6+𝛼𝛼5𝜂𝜂 +
        𝑖𝑖�𝐴𝐴28�𝑒𝑒𝛽𝛽3+𝛼𝛼5𝜂𝜂 − 𝑒𝑒𝛽𝛽3+𝛼𝛼6𝜂𝜂� −
       𝐴𝐴23𝜂𝜂𝑒𝑒𝛼𝛼5+𝛼𝛼6𝜂𝜂 + 𝐴𝐴24𝜂𝜂𝑒𝑒𝛼𝛼6+𝛼𝛼5𝜂𝜂 ��         (30) 

where the constants are obtained but not given 
here due to sake of brevity.    

Now , for the resultant velocity and the shear 
stress of the steady and unsteady flow , we 
write 

 𝑢𝑢0(𝜂𝜂) + 𝑖𝑖𝑣𝑣0(𝜂𝜂) = 𝑞𝑞0(𝜂𝜂)                          (31) 

and   𝑢𝑢1(𝜂𝜂) + 𝑖𝑖𝑣𝑣1(𝜂𝜂) = 

                   𝑞𝑞1(𝜂𝜂)𝑒𝑒𝑖𝑖𝑡𝑡 + 𝑞𝑞2(𝜂𝜂)𝑒𝑒−𝑖𝑖𝑡𝑡             (32) 

The solution (31) corresponds to the steady part 
which gives 𝑢𝑢0  as the primary and 𝑣𝑣0  as the 
secondary velocity components. The amplitude 
and phase difference due to these primary and 
secondary velocities for the steady flow are 
given by  

𝑅𝑅0 = �𝑢𝑢0
2 + 𝑣𝑣0

2   

𝜃𝜃0 = tan−1 �𝑣𝑣0
𝑢𝑢0
�                                       (33) 

The amplitude and the phase difference of the 
shear stress at the stationary plate (𝜂𝜂 = 0) for 
the steady flow can be obtained as 

 

𝜏𝜏0𝑟𝑟 = �𝜏𝜏0𝑥𝑥
2 + 𝜏𝜏0𝑦𝑦

2       𝜃𝜃0𝑟𝑟 = tan−1 �𝜏𝜏0𝑦𝑦

𝜏𝜏0𝑥𝑥
�  

                                                            (34) 
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where 𝜏𝜏0𝑥𝑥 + 𝑖𝑖𝜏𝜏0𝑦𝑦 = �𝜕𝜕𝑞𝑞
𝜕𝜕𝜂𝜂
�
𝜂𝜂=0

 

𝜏𝜏0𝑥𝑥 = �𝜕𝜕𝑢𝑢0
𝜕𝜕𝜂𝜂

− 𝑘𝑘 �𝜔𝜔 𝜕𝜕2𝑢𝑢0
𝜕𝜕𝜂𝜂𝜕𝜕𝑡𝑡

+ 𝜀𝜀 𝜕𝜕
2𝑢𝑢0
𝜕𝜕𝜂𝜂2 ��

𝜂𝜂=0
  

𝜏𝜏0𝑦𝑦 = �𝜕𝜕𝑣𝑣0
𝜕𝜕𝜂𝜂

− 𝑘𝑘 �𝜔𝜔 𝜕𝜕2𝑣𝑣0
𝜕𝜕𝜂𝜂𝜕𝜕𝑡𝑡

+ 𝜀𝜀 𝜕𝜕
2𝑣𝑣0
𝜕𝜕𝜂𝜂2 ��

𝜂𝜂=0
  

Here , 𝜏𝜏0𝑥𝑥  and 𝜏𝜏0𝑦𝑦  are , respectively , the shear 
stresses at the  stationary plate due to the   
primary and secondary velocity components. 

The solutions of (20) and (21), together give 
the unsteady part of the flow. The unsteady 
primary and secondary velocity components 
can be obtained as   

𝑢𝑢1 = (𝑞𝑞1 + 𝑞𝑞2)𝜀𝜀𝜀𝜀𝜀𝜀𝑡𝑡  

𝑣𝑣1 = (𝑞𝑞1 − 𝑞𝑞2)𝜀𝜀𝑖𝑖𝑛𝑛𝑡𝑡  

The resultant velocity and phase difference for 
the unsteady flow can be obtained as 

𝑅𝑅1 = �𝑢𝑢1
2 + 𝑣𝑣1

2         

𝜃𝜃1𝑟𝑟 = tan−1 �𝑣𝑣1
𝑢𝑢1
�                                 (35) 

The amplitude and phase difference of shearing 
stress for the unsteady part of the flow, at the 
stationary plate 𝜂𝜂 = 0 can be obtained as  

𝜏𝜏1𝑥𝑥 + 𝑖𝑖𝜏𝜏1𝑦𝑦 = �𝜕𝜕𝑢𝑢1
𝜕𝜕𝜂𝜂
�
𝜂𝜂=0

+ 𝑖𝑖 �𝜕𝜕𝑣𝑣1
𝜕𝜕𝜂𝜂
�
𝜂𝜂=0

    

which gives                                                          

𝜏𝜏1𝑟𝑟 = �𝜏𝜏1𝑥𝑥
2 + 𝜏𝜏1𝑦𝑦

2    ,  𝜃𝜃1𝑟𝑟 = tan−1 �𝜏𝜏1𝑦𝑦

𝜏𝜏1𝑥𝑥
�     

3. Results and Discussion: 
For the purpose of discussing the effects of 
various physical parameters on the flow 
behaviours, numerical calculations have been 
carried out for different values of these 
parameters viz. Rotation parameter Ω  , the 
frequency parameters 𝜔𝜔, the injection /suction 
parameters 𝑆𝑆 , the permeability parameters 𝐾𝐾 . 
Emphasis has been given on visco-elastic 
parameter which is exhibited through the non-
dimensional parameter 𝑘𝑘. The non-zero values 
of 𝑘𝑘  characterize the visco-elastic fluid and 
𝑘𝑘 = 0 represents the Newtonian fluid. The fluid 
velocity and the shearing stress at the stationary 

plate have been analyzed graphically for 
various values of flow parameters involved in 
the solution. 

               The resultant fluid velocity 𝑅𝑅0  ( for 
steady part) and 𝑅𝑅1 ( for unsteady part) against 
𝜂𝜂 have been depicted in the figures 1 to 4 and 5 
to 9 respectively. In steady part (figures 1 to 4 
), it is observed that the resultant fluid velocity, 
accelerates with the growth of visco-elasticity 
in compared to simple Newtonian Newtonian 
fluid with the variation of physical parameters 

𝐾𝐾 , 𝜀𝜀 and Ω. Again, for unsteady part (figures 5 
to 9), the resultant fluid velocity 𝑅𝑅1 reveals an 
enhancement for both Newtonian and visco-
elastic fluids with the variation of physical 
parameters   𝑆𝑆  , Ω  and 𝜔𝜔  in the fluid flow 
region. The pattern is same in all the figures.       

              

Figure 1:  Resultant velocity R0  against   𝜂𝜂  for 
K=2  , S=3 , Ω=2 

 

Figure 2:  Resultant velocity R0    against   𝜂𝜂  for  
K=2  , S=5 , Ω=2 
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Figure 3: Resultant velocity R0  against   𝜂𝜂  for  
K=2  , S=3 , Ω=1 

 

Figure 4:  Resultant velocity R0    against   𝜂𝜂  for  
K=4  , S=3 , Ω=2 

 

Figure5:  Resultant velocity R1    against   𝜂𝜂  for  
K=2  , S=3 , Ω=2 , 𝜔𝜔=1 

 

 

Figure 6:   Resultant velocity R1    against   𝜂𝜂  for  
K=2  , S=5 , Ω=2 , 𝜔𝜔=1 

 

Figure 7: Resultant velocity R1    against   𝜂𝜂  for  
K=2  , S=3 , Ω=1 , 𝜔𝜔=1 

 

Figure 8: Resultant velocity R1    against   𝜂𝜂  for  
K=4  , S=3 , Ω=2 , 𝜔𝜔=1 

 

Figure 9: Resultant velocity R1    against   𝜂𝜂  for  
K=2  , S=3 , Ω=2 , 𝜔𝜔=3 

The amplitude 𝜏𝜏𝜀𝜀𝑟𝑟  of the shearing stress at the 
stationary plate (𝜂𝜂0)  for the steady flow has 
been presented against the permeability 
parameter 𝐾𝐾  (figure10), injection/suction 
parameter  𝑆𝑆 (figure 12) and rotation parameter 
Ω (figure 14) respectively. In all the cases , it is 
observed that the amplitude 𝜏𝜏0𝑟𝑟  of the shearing 
stress enhances in the fluid flow region with the 
growth of visco-elasticity in comparison with 
Newtonian fluid with combination of other 
flow problems but for the amplitude 𝜏𝜏1𝑟𝑟  of the 
shearing stress at the stationary plate (𝜂𝜂 = 0) 
for the unsteady flow against the parameters 𝐾𝐾 
(permeability parameter), 𝑆𝑆  (suction 
parameter), Ω  (rotation parameter) and 𝜔𝜔 
(frequency parameter) the reverse pattern has 
been observed  (figures 11 , 13, 15, 17).   
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Figure 10:  Shearing stress  𝜏𝜏0𝑟𝑟   against   𝐾𝐾  for  
S=3 , Ω=2 , 𝜔𝜔=1 

 

Figure 11: Shearing stress  𝜏𝜏1𝑟𝑟   against   𝐾𝐾  for   
𝑆𝑆=3 , 𝛺𝛺=2, 𝜔𝜔=1 

 

Figure 12: Shearing stress  𝜏𝜏0𝑟𝑟   against   𝑆𝑆  for     
𝐾𝐾=2 , Ω=2 , 𝜔𝜔=1 

 

Figure 13: Shearing stress 𝜏𝜏1𝑟𝑟   against  𝑆𝑆  for   
𝐾𝐾=2 , 𝛺𝛺=2, 𝜔𝜔=1 

 

Figure 14: Shearing stress 𝜏𝜏0𝑟𝑟   against   Ω  for     
𝐾𝐾=2 , 𝑆𝑆=3, 𝜔𝜔=1 

 

Figure 15: Shearing stress 𝜏𝜏1𝑟𝑟   against   𝛺𝛺  for  
𝐾𝐾=2 , 𝑆𝑆=3, 𝜔𝜔=1 

 

Figure 16: Shearing stress 𝜏𝜏1𝑟𝑟   against   𝜔𝜔  for   
𝐾𝐾=2 , 𝑆𝑆=3, 𝛺𝛺=2 

Again, the phase difference 𝜃𝜃0𝑟𝑟  (for steady 
flow) and 𝜃𝜃1𝑟𝑟  (for unsteady flow) of the 
shearing stress against different physical 
parameter have been depicted in figures 17 to 
23. For steady flow, the phase difference 𝜃𝜃0𝑟𝑟  
shows an decelerating trend with the growth of 
visco-elasticity as well as the increase of 
permeability parameter 𝐾𝐾  (figure 17), 
injection/suction parameter 𝑆𝑆 , (figure 19) and 
the rotation parameter Ω  (figure 21) 
respectively and the same patterns are observed 
for the unsteady flow ( figures 18, 20, 22, 23). 
It may be remarked that the effects of visco-
elastic parameter in combination of other flow 
parameters play a significant role in this 
observation.    

 

Figure 17: Phase difference  𝜃𝜃0𝑟𝑟   against   𝐾𝐾  for  
𝑆𝑆=3 , Ω=2 , 𝜔𝜔=1 
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Figure 18: Phase difference  𝜃𝜃1𝑟𝑟   against   𝐾𝐾  for  
𝑆𝑆=3, 𝛺𝛺=2 , ω=1 

 

Figure 19: Phase difference 𝜃𝜃0𝑟𝑟   against   𝑆𝑆  for  
𝐾𝐾=2 , Ω=2 , 𝜔𝜔=1 

 

Figure 20:  Phase difference 𝜃𝜃1𝑟𝑟   against   𝑆𝑆  for   
𝐾𝐾=2, 𝛺𝛺=2 , ω=1 

 

Figure 21: Phase difference 𝜃𝜃0𝑟𝑟   against   Ὠ  for  
𝐾𝐾=2 , 𝑆𝑆=2 , 𝜔𝜔=1 

 

Figure 22: Phase difference 𝜃𝜃1𝑟𝑟   against   𝛺𝛺  for      
𝐾𝐾=2, 𝑆𝑆=3 , ω=1 

 

Figure 23: Phase difference 𝜃𝜃1𝑟𝑟   against   𝜔𝜔  for      
𝐾𝐾=2, 𝑆𝑆=3 , Ω=2 

 

4.Conclusion: 
    A theoretical analysis has been performed to 
study the influence of visco-elasticity on an 
oscillatory unsteady flow of a visco-elastic 
fluid through a highly porous medium which is 
bounded between two infinite parallel plates in 
presence of constant suction/injection. The 
investigation gives the following conclusion. 

        The growth of visco-elasticity accelerates 
the resultant velocity in both steady and 
unsteady parts of the fluid flow region.The 
amplitude of the shearing stress at the 
stationary plate depicts a rising trend with the 
increasing values of the visco-elastic parameter 
for steady part of the flow. The enhancement of 
visco-elastic parameter decelerates the 
amplitude of the shearing stress at the 
stationary plate  for unsteady part of the 
flow.The phase difference of the shearing stress 
reveals a diminishing trend when the visco-
elastic parameter value increases in both steady 
and unsteady parts of the flow.      

 
 

0.19
0.195

0.2
0.205

0.21
0.215

0 2 4 6

k=0

k=0.01

k=0.02

θ1r

K

0

0.1

0.2

0.3

0.4

0 2 4 6

k=0
k=0.01
k=0.02

S

θ0r

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6

k=0

k=0.01

k=0.02

S

θ1r

0
0.1
0.2
0.3
0.4
0.5

0 2 4 6

k=0

k=0.01

k=0.02

Ω

θ0r

0.19

0.2

0.21

0.22

0.23

0 2 4

k=0

k=0.01

k=0.02

Ω

θ1r

0

0.2

0.4

0.6

0.8

0 2 4 6

k=0

k=0.01

k=0.02

ω

θ1r

WSEAS TRANSACTIONS on FLUID MECHANICS Rita Choudhury, Hillol Kanti Bhattacharjee

E-ISSN: 2224-347X 33 Volume 10, 2015



Reference: 

1. N. Rott and W. S. Lewellen, Free convective 
    flow   through  a  rotating    porous medium ,   
    Progr.  Aeronaut   Sci. 7  (1966) ,     111-117. 
2. A. Raptis, C. P. Perdikis and G. Tzivvanidis ,  
    Free    convection      through     a       porous  
    medium bounded    by  a  vertical surface , J.   
    Phys. D. Appl. 14(1981), L99-L102.  
3. A. Raptis, Unsteady   free  convective   flow   
     through a porous medium , Int. J. Engin. Sci.  
     21(1983), 345-348.      
 4. A. Raptis and C.P.Perdikis, Oscillatory flow 
     through a porous medium by the presence of       
     free convective flow, Int. J. Engin.   Sci.   23  
    (1985), 51-55. 
5. K.   D.   Singh and   Suresh    Kumar,     Free  
    convective fluctuating flow through a porous  
     medium with variable permeability, J. Math. 
     Phys. Sci. 27 (1993) 141-148. 
6. R.C.Baghel ,    G. Kumar and    R.G.Sharma,  
    Two-dimensional unsteady free   convective  
     flow   of  a   viscous   incompressible  f luid  
     through a rotating porous medium , Def. Sci.  
     J. (DESIDOC) 42 (1992), 59-68.   
7. A. Raptis and A. K. Singh,     Unsteady  free  
     convection   flow        through   a      porous 
     medium.   Astrophys  Space Sci., 1985,112, 
     259.  
8. K.  R.  Singh  and T.   G.   Cowling,    Effect  
    of magnetic field on free convective  flow of  
    electrically conducting fluids   past a     semi- 
     infinite    flat  plate, Quart.  J.  Mech.   Appl.  
    Math. 1963,16,1. 
9. J. R.   Loyed      and     E.    M.        Sparrow,   
    Combined forced and free convection   flow   
    on   vertical    surfaces , Int.  J.  Heat     Mass 
    Transfer 1970, 13, 434.    
10. K. Walters ,     Non-Newtonian    effects in  
     some      elastic-viscous     liquids      whose    
     behaviour   at    small     rates     of  shear  is   
     characterized by a general  linear   equation  
     of  state, Quart. J. Mech.Applied  Math,  15,          
     63, 76(1962).  
11.V.  M.   Soundalgekar   and P.     Puri,     On 
     fluctuating flow  of  an  elastic-viscous  fluid  
     past  an  infinite  plate with variable suction,    
     J. Fluid  Mechanics, 35 (3), 561-573 (1969).   
 
 
 
 
 
 
 

 
 
12. N.     Nanousis ,      Unsteady       magneto- 
       hydrodynamic flows in a rotating elastico- 
       viscous fluid ,   Astro-physics  and   space   
       science, 199(2), , (1993), 317-321. 
13. R. Choudhury and A. Das, Steady flow   of      
      Walters liquid 𝐵𝐵′    through the annulus   of  
       porous coaxial  circular  cylinders,  Indian  
       Journal  of Pure and  Applied Mathematics,  
        33(6),  2002 , 807-817. 
14. M. V. R. Murthy , G. N. Humera, Rafiuddin  
       and M.C.K. Reddy, Unsteady MHD     free 
       convective     Walters   memory  flow with  
       constant    suction and   heat sink,    ARPN.     
       J. Appl.Sci, 2,12-16 (2007). 
15. S.    Mustafa,     Rafiuddin and     M.  V.  R.  
       Murthy,   Unsteady   memory flow     with  
       oscillatory suction  free stream and       heat    
       source,   ARPN,   J  .   Eng.   Appl.  Sci,  3,     
       (2008), 17 – 24.  
16. R. Choudhury and D. Dey, Free convective  
      visco-elastic   flow   with   heat     and mass  
      transfer   through a   porous   medium   with  
      periodic permeability, Int. J. Heat and Mass 
      transfer, 53,  2010,  1666-1672.        
17. B. T. Cheng; O. Anwar  ,   J.    Zueco   and   
       M. Narahari,  Numerical study of transient    
       free convective mass transfer in a Walters-  
       B visco-elastic   flow    with   wall suction,  
      Comm. in Non-linear Sci and   Num.   Sin.,   
      16, 216-225 (2011). 
18. R. Choudhury and U. J. Das,   Heat transfer  
      to MHD oscillatory   visco-elastic flow in  a  
      channel filled with porous medium, Physics  
      Research     International,      Ar ID 879537,   
      2012,  5 pages. 
19. R.   Choudhury    and   S.      Das,     Visco- 
      elastic free  convective    flow     and    heat    
      transfer past an oscillatory porous plate   in  
      the    slip    flow    regime,   Advances     in    
      Theoretical and  Applied   Mechanics, 7(4),  
      (2012) , 403-416. 
20. J.   L.     Nowinski     and     I.    A.    Ismail,  
      Application of multi-parameter perturbation  
      method   to    elasto-statistics in   theoretical   
      and  applied mechanics,  N.  A.  Shaw,   11,  
     (1965) Pergamon press. 
 

WSEAS TRANSACTIONS on FLUID MECHANICS Rita Choudhury, Hillol Kanti Bhattacharjee

E-ISSN: 2224-347X 34 Volume 10, 2015




